Estimating parameters for single populations
Ingin Belajar Bangun Bisnis di Internet Namun
Banyak Kendala? Kami punya video-video tutorialnya, semoga membantu.
silahkan klik link dibawah ini
Silahkan KLIK tulisan tonton vidio
untuk mendapatkan vidionya :
- Use the
following data to construct 80%,
94%, and 98% confidence
intervals to estimate m. Assume
that s is
7,75. State the point estimate.
44
|
37
|
49
|
30
|
56
|
48
|
53
|
42
|
51
|
38
|
39
|
45
|
47
|
52
|
59
|
50
|
46
|
34
|
39
|
46
|
27
|
35
|
52
|
51
|
46
|
45
|
58
|
51
|
37
|
45
|
52
|
51
|
54
|
39
|
48
|
Column1
|
0,8:2=0.4 Z= 1.28
![]() ![]() ![]() ![]() ![]() |
|
Mean
|
45.6
|
|
Standard Error
|
1.309436
|
|
Median
|
46
|
|
Mode
|
51
|
|
Standard Deviation
|
7.746726
|
|
Sample Variance
|
60.01176
|
|
Kurtosis
|
-0.22084
|
|
Skewness
|
-0.51004
|
|
Range
|
32
|
|
Minimum
|
27
|
|
Maximum
|
59
|
|
Sum
|
1596
|
|
Count
|
35
|
|
Confidence Level(80.0%)
|
1.711369
|
Column1
|
0,94:2=0,47==== Z= 1.88
![]() ![]() ![]() ![]() ![]() |
|
Mean
|
45.6
|
|
Standard Error
|
1.309436
|
|
Median
|
46
|
|
Mode
|
51
|
|
Standard Deviation
|
7.746726
|
|
Sample Variance
|
60.01176
|
|
Kurtosis
|
-0.22084
|
|
Skewness
|
-0.51004
|
|
Range
|
32
|
|
Minimum
|
27
|
|
Maximum
|
59
|
|
Sum
|
1596
|
|
Count
|
35
|
|
Confidence Level(94.0%)
|
2.547724
|
0,98:2=0,49 === Z=2.33
![]() ![]() ![]() ![]() ![]() |
||
Mean
|
45.64706
|
|
Standard Error
|
1.347661
|
|
Median
|
46.5
|
|
Mode
|
51
|
|
Standard Deviation
|
7.858145
|
|
Sample Variance
|
61.75045
|
|
Kurtosis
|
-0.28264
|
|
Skewness
|
-0.52318
|
|
Range
|
32
|
|
Minimum
|
27
|
|
Maximum
|
59
|
|
Sum
|
1552
|
|
Count
|
34
|
|
Confidence Level(98.0%)
|
3.294753
|
2. Use
the following information to compute the confidence interval for the population
proportion.
a. n = 715 and x
= 329, with 95%
confidence z=1.96





0,0948≤p≤0,8254
b. n = 284 and p = 0,71
with 90% confidence z=1.65




0,6656≤p≤0,7544
Atau




CI=90% Z=1.65






c. n = 1250
and p
= 0,48 with 95% confidence
z=1.96




0,4567≤p≤0,5033
d. n = 457
and x = 270, with 98%
confidence z=2,33





0.5373≤p≤0.6443
Selesai